
WIDE AREA NETWORKWIDE AREA NETWORK
Routing & Congestion Control

IntroductionIntroduction
 Congestion control and routing are

major issues to be handled in Wide
Area Networks .

 Congestion is handled at transport
layer and routing is handled at
network layer.

2

Congestion Control Congestion Control
 When one part of the subnet (e.g. one or more routers in

an area) becomes overloaded, congestion results.
 Because routers are receiving packets faster than they can

forward them, one of two things must happen:
◦ The subnet must prevent additional packets from

entering the congested region until those already
present can be processed.
◦ The congested routers can discard queued packets to

make room for those that are arriving.

3

Factors that Cause CongestionFactors that Cause Congestion
 Packet arrival rate exceeds the

outgoing link capacity.
 Insufficient memory to store arriving

packets
 Bursty traffic
 Slow processor

4

Congestion Control Congestion Control vsvs Flow ControlFlow Control

 Congestion control is a global issue –
involves every router and host within
the subnet

 Flow control – scope is point-to-point;
involves just sender and receiver.

5

Congestion Congestion Control (cont.)Control (cont.)
 Congestion Control is concerned with efficiently using a

network at high load.

 Several techniques can be employed. These include:

◦ Warning bit

◦ Choke packets

◦ Load shedding

◦ Random early discard

◦ Traffic shaping

 The first 3 deal with congestion detection and recovery. The
last 2 deal with congestion avoidance.

6

Warning BitWarning Bit
 A special bit in the packet header is set by the router

to warn the source when congestion is detected.
 The bit is copied and piggy-backed on the ACK and

sent to the sender.
 The sender monitors the number of ACK packets it

receives with the warning bit set and adjusts its
transmission rate accordingly.

7

Choke PacketsChoke Packets
 A more direct way of telling the source to slow down.
 A choke packet is a control packet generated at a

congested node and transmitted to restrict traffic flow.
 The source, on receiving the choke packet must reduce

its transmission rate by a certain percentage.
 An example of a choke packet is the ICMP Source

Quench Packet

8

HopHop--byby--Hop Choke PacketsHop Choke Packets

 Over long distances or at high speeds choke
packets are not very effective.

 A more efficient method is to send to choke
packets hop-by-hop.

 This requires each hop to reduce its
transmission even before the choke packet
arrive at the source.

9

Load SheddingLoad Shedding
 When buffers become full, routers simply discard packets.
 Which packet is chosen to be the victim depends on the

application and on the error strategy used in the data link
layer.

 For a file transfer, for, e.g. cannot discard older packets since
this will cause a gap in the received data.

 For real-time voice or video it is probably better to
throw away old data and keep new packets.

 Get the application to mark packets with discard priority.

10

Random Early Discard (RED)Random Early Discard (RED)
 This is a proactive approach in which the router

discards one or more packets before the buffer
becomes completely full.

 Each time a packet arrives, the RED algorithm
computes the average queue length, avg.

 If avg is lower than some lower threshold, congestion
is assumed to be minimal or non-existent and the
packet is queued.

11

RED, RED, (Cont.)(Cont.)
 If avg is greater than some upper

threshold, congestion is assumed to be
serious and the packet is discarded.

 If avg is between the two thresholds,
this might indicate the onset of
congestion. The probability of
congestion is then calculated.

12

Traffic ShapingTraffic Shaping
 Another method of congestion control is to

“shape” the traffic before it enters the
network.

 Traffic shaping controls the rate at which
packets are sent (not just how many). Used
in ATM and Integrated Services networks.

 At connection set-up time, the sender and
carrier negotiate a traffic pattern (shape).

13

What is What is Routing?Routing?
Moving information across the network from
a source to a destination, typically through
intermediate node(s). It consists of:

 Determining optimal routing paths

 Transporting information (e.g. grouped in
packets, cells in packet switching)

14

Path DeterminationPath Determination
 Routing protocols use routing algorithms to

populate routing tables, which contain the
route information such as
◦ destination/next hop association
◦ desirability of a path, and other

 Routers build a picture of network topology
based on routing information received from
other routers

15

Shortest PathShortest Path

16

CB

A

E

D

F

0

328

5 8

48

7 1

2 5

2

3 9

Weighted GraphsWeighted Graphs
 In a weighted graph, each edge has an associated numerical

value, called the weight of the edge
 Edge weights may represent, distances, costs, etc.
 Example:
◦ In a flight route graph, the weight of an edge represents the

distance in miles between the endpoint airports

17

ORD PVD

MIA
DFW

SFO

LAX

LGA

HNL

Shortest Path ProblemShortest Path Problem
 Given a weighted graph and two vertices u and v, we want to

find a path of minimum total weight between u and v.
◦ Length of a path is the sum of the weights of its edges.

 Example:
◦ Shortest path between Providence and Honolulu

 Applications
◦ Internet packet routing
◦ Flight reservations
◦ Driving directions

18

ORD PVD

MIA
DFW

SFO

LAX

LGA

HNL

Shortest Path PropertiesShortest Path Properties
Property 1:

A subpath of a shortest path is itself a shortest path
Property 2:

There is a tree of shortest paths from a start vertex to all the other
vertices

Example:
Tree of shortest paths from Providence

19

ORD PVD

MIA
DFW

SFO

LAX

LGA

HNL

Weighted GraphsWeighted Graphs
 In a weighted graph, each edge has an associated numerical

value, called the weight of the edge
 Edge weights may represent, distances, costs, etc.
 Example:
◦ In a flight route graph, the weight of an edge represents the

distance in miles between the endpoint airports

20

ORD PVD

MIA
DFW

SFO

LAX

LGA

HNL

Shortest Path ProblemShortest Path Problem
 Given a weighted graph and two vertices u and v, we want to

find a path of minimum total weight between u and v.
◦ Length of a path is the sum of the weights of its edges.

 Example:
◦ Shortest path between Providence and Honolulu

 Applications
◦ Internet packet routing
◦ Flight reservations
◦ Driving directions

21

ORD PVD

MIA
DFW

SFO

LAX

LGA

HNL

Shortest Path PropertiesShortest Path Properties
Property 1:

A subpath of a shortest path is itself a shortest path
Property 2:

There is a tree of shortest paths from a start vertex to all the other
vertices

Example:
Tree of shortest paths from Providence

22

ORD PVD

MIA
DFW

SFO

LAX

LGA

HNL

Dijkstra’s AlgorithmDijkstra’s Algorithm

 The distance of a vertex
v from a vertex s is the
length of a shortest path
between s and v

 Dijkstra’s algorithm
computes the distances
of all the vertices from a
given start vertex s

 Assumptions:
◦ the graph is connected
◦ the edges are undirected
◦ the edge weights are

nonnegative

 We grow a “cloud” of vertices,
beginning with s and eventually
covering all the vertices

 We store with each vertex v a
label d(v) representing the
distance of v from s in the
subgraph consisting of the cloud
and its adjacent vertices

 At each step
◦ We add to the cloud the vertex u

outside the cloud with the
smallest distance label, d(u)

◦ We update the labels of the
vertices adjacent to u

23

Dijkstra's Shortest Path Dijkstra's Shortest Path
AlgorithmAlgorithm
Find shortest path from s to t.

24

s

3

t

2

6

7

4

5

23

18

2

9

14

15
5

30

20

44

16

11

6

19

6

Dijkstra's Shortest Path Dijkstra's Shortest Path
AlgorithmAlgorithm

25

s

3

t

2

6

7

4

5

23

18

2

9

14

15
5

30

20

44

16

11

6

19

6

0

distance label

S = { }
Q = { s, 2, 3, 4, 5, 6, 7, t }

Dijkstra's Shortest Path Dijkstra's Shortest Path
AlgorithmAlgorithm

26

s

3

t

2

6

7

4

5

23

18

2

9

14

15
5

30

20

44

16

11

6

19

6

0

distance label

S = { }
Q = { s, 2, 3, 4, 5, 6, 7, t }ExtractMin()

Dijkstra's Shortest Path AlgorithmDijkstra's Shortest Path Algorithm

27

s

3

t

2

6

7

4

5

23

18

2

9

14

15
5

30

20

44

16

11

6

19

6

15

9

14

0

distance label

S = { s }
Q = { 2, 3, 4, 5, 6, 7, t }decrease key

X

X

X

Dijkstra's Shortest Path AlgorithmDijkstra's Shortest Path Algorithm

28

s

3

t

2

6

7

4

5

23

18

2

9

14

15
5

30

20

44

16

11

6

19

6

15

9

14

0

distance label

S = { s }
Q = { 2, 3, 4, 5, 6, 7, t }

X

X

X

ExtractMin()

Dijkstra's Shortest Path Dijkstra's Shortest Path
AlgorithmAlgorithm

29

s

3

t

2

6

7

4

5

23

18

2

9

14

15
5

30

20

44

16

11

6

19

6

15

9

14

0

S = { s, 2 }
Q = { 3, 4, 5, 6, 7, t }

X

X

X

Dijkstra's Shortest Path Dijkstra's Shortest Path
AlgorithmAlgorithm

30

s

3

t

2

6

7

4

5

23

18

2

9

14

15
5

30

20

44

16

11

6

19

6

15

9

14

0

S = { s, 2 }
Q = { 3, 4, 5, 6, 7, t }X

X

X

decrease key

X 32

Dijkstra's Shortest Path Dijkstra's Shortest Path
AlgorithmAlgorithm

31

s

3

t

2

6

7

4

5

23

18

2

9

14

15
5

30

20

44

16

11

6

19

6

15

9

14

0

S = { s, 2 }
Q = { 3, 4, 5, 6, 7, t }

X

X

X

X 32

ExtractMin()

Dijkstra's Shortest Path Dijkstra's Shortest Path
AlgorithmAlgorithm

32

s

3

t

2

6

7

4

5

23

18

2

9

14

15
5

30

20

44

16

11

6

19

6

15

9

14

0

S = { s, 2, 6 }
Q = { 3, 4, 5, 7, t }

X

X

X

X 32

44
X

Dijkstra's Shortest Path Dijkstra's Shortest Path
AlgorithmAlgorithm

33

s

3

t

2

6

7

4

5

23

18

2

9

14

15
5

30

20

44

16

11

6

19

6

15

9

14

0

S = { s, 2, 6 }
Q = { 3, 4, 5, 7, t }

X

X

X

X 32

44
X

ExtractMin()

Dijkstra's Shortest Path Dijkstra's Shortest Path
AlgorithmAlgorithm

34

s

3

t

2

6

7

4

5

23

18

2

9

14

15
5

30

20

44

16

11

6

19

6

15

9

14

0

S = { s, 2, 6, 7 }
Q = { 3, 4, 5, t }

X

X

X

X 32

44
X

35X

59 X

Dijkstra's Shortest Path Dijkstra's Shortest Path
AlgorithmAlgorithm

35

s

3

t

2

6

7

4

5

23

18

2

9

14

15
5

30

20

44

16

11

6

19

6

15

9

14

0

S = { s, 2, 6, 7 }
Q = { 3, 4, 5, t }

X

X

X

X 32

44
X

35X

59 X

ExtractMin

Dijkstra's Shortest Path Dijkstra's Shortest Path
AlgorithmAlgorithm

36

s

3

t

2

6

7

4

5

23

18

2

9

14

15
5

30

20

44

16

11

6

19

6

15

9

14

0

S = { s, 2, 3, 6, 7 }
Q = { 4, 5, t }

X

X

X

X 32

44
X

35X

59 XX51

X 34

Dijkstra'sDijkstra's Shortest Path AlgorithmShortest Path Algorithm

37

s

3

t

2

6

7

4

5

23

18

2

9

14

15
5

30

20

44

16

11

6

19

6

15

9

14

0

S = { s, 2, 3, 6, 7 }
Q = { 4, 5, t }

X

X

X

X 32

44
X

35X

59 XX51

X 34

ExtractMin

Dijkstra's Shortest Path Dijkstra's Shortest Path
AlgorithmAlgorithm

38

s

3

t

2

6

7

4

5

23

18

2

9

14

15
5

30

20

44

16

11

6

19

6

15

9

14

0

S = { s, 2, 3, 5, 6, 7 }
Q = { 4, t }

X

X

X

X 32

44
X

35X

59 XX51

X 34

X50

X45

Dijkstra'sDijkstra's Shortest Path Shortest Path
AlgorithmAlgorithm

39

s

3

t

2

6

7

4

5

23

18

2

9

14

15
5

30

20

44

16

11

6

19

6

15

9

14

0

S = { s, 2, 3, 5, 6, 7 }
Q = { 4, t }

X

X

X

X 32

44
X

35X

59 XX51

X 34

X50

X45

ExtractMin

Dijkstra's Shortest Path Dijkstra's Shortest Path
AlgorithmAlgorithm

40

s

3

t

2

6

7

4

5

23

18

2

9

14

15
5

30

20

44

16

11

6

19

6

15

9

14

0

S = { s, 2, 3, 4, 5, 6, 7 }
Q = { t }

X

X

X

X 32

44
X

35X

59 XX51

X 34

X50

X45

Dijkstra's Shortest Path Dijkstra's Shortest Path
AlgorithmAlgorithm

41

s

3

t

2

6

7

4

5

23

18

2

9

14

15
5

30

20

44

16

11

6

19

6

15

9

14

0

S = { s, 2, 3, 4, 5, 6, 7 }
Q = { t }

X

X

X

X 32

44
X

35X

59 XX51

X 34

X50

X45

ExtractMin

Dijkstra’sDijkstra’s AlgorithmAlgorithm

 A priority queue stores
the vertices outside the
cloud
◦ Key: distance
◦ Element: vertex

 Locator-based methods
◦ insert(k,e) returns a

locator
◦ replaceKey(l,k) changes

the key of an item
 We store two labels

with each vertex:
◦ Distance (d(v) label)
◦ locator in priority queue

42

Algorithm DijkstraDistances(G, s)
Q new heap-based priority queue
for all v G.vertices()

if v = s
setDistance(v, 0)

else
setDistance(v,)

l Q.insert(getDistance(v), v)
setLocator(v,l)

while Q.isEmpty()
u Q.removeMin()
for all e G.incidentEdges(u)

{ relax edge e }
z G.opposite(u,e)
r getDistance(u) + weight(e)
if r < getDistance(z)

setDistance(z,r)
Q.replaceKey(getLocator(z),r)

Why Why Dijkstra’sDijkstra’s Algorithm WorksAlgorithm Works
 Dijkstra’s algorithm is based on the greedy

method. It adds vertices by increasing distance.

43

CB

A

E

D

F

0

327

5 8

48

7 1

2 5

2

3 9

 Suppose it didn’t find all shortest
distances. Let F be the first wrong
vertex the algorithm processed.

 When the previous node, D, on the
true shortest path was considered,
its distance was correct.

 But the edge (D,F) was relaxed at
that time!

 Thus, so long as d(F)>d(D), F’s
distance cannot be wrong. That is,
there is no wrong vertex.

ApplicationApplication
 Congestion and routing are two main

areas of WAN which can help us to
improve network performance.

 With congestion control, delay in
packet delivery can be reduced to
much extent.

 With optimal algorithms for routing,
best possible routes can give much
better network performnace and faster
delivery of packets.

44

Scope of ResearchScope of Research
 Traffic management in wireless

networks
 Route optimization in IPv6

45

